Skip to navigation
Skip to navigation
Skip to search form
Skip to login form
Skip to footer
Skip to main content
MVP189
LEO777
LEO777
LEO777
LEO777
LEO777
LEO777
LEO777
LEO777
LEO777
PAREPOS
JAVABET99
KONTAN88
PEWE128
LAGA88
SKY99IDN
BUANA88
BOXING55
DEWISRI88
DEWISRI88
DEWISRI88
MVP189
slot mania
MVP189
situs tergacor
pg slot wallet
Accessibility options
Accessibility profiles
Visual impairment
Seizure and epileptic
Color vision deficiency
ADHD
Learning
Content adjustments
Readable font
Highlight titles
Highlight links
Stop animations
Text size
+
+ +
+ + +
Line height
+
+ +
+ + +
Text spacing
+
+ +
+ + +
Color adjustments
Dark contrast
Light contrast
High contrast
High saturation
Low saturation
Monochrome
Orientation adjustments
Reading guide
Reading Mask
Big black cursor
Big white cursor
Email: it@huph.edu.vn
Email: it@huph.edu.vn
Các khóa học
Link list
Đổi giao diện
Giao diện cũ
Giao diện mới
Learning AI
Machine Learning cơ bản
en
English
Statistics and Math
Master statistics & machine learning intuition, math, code
0 students
Last updated
Dec 2024
Enrol now
Overview
Course content
Instructors
About the course
Show more...
Course content
Sections:
1
•
Activities:
1
•
Resources:
221
Expand all
Section 1
Contents
Announcements
001 Important Getting the most out of this course gitir
002 About using MATLAB or Python gitir
003 Statistics guessing game gitir
004 Using the Q A forum gitir
005 optional Entering time stamped notes in the Udemy video player gitir
006 Should you memorize statistical formulas gitir
007 Arithmetic and exponents gitir
008 Scientific notation gitir
009 Summation notation gitir
010 Absolute value gitir
011 Natural exponent and logarithm gitir
012 The logistic function gitir
013 Rank and tied rank gitir
014 Download materials for the entire course gitir
015 Is data singular or plural gitir
016 Where do data come from and what do they mean gitir
017 Types of data categorical numerical etc gitir
018 Code representing types of data on computers gitir
019 Sample vs population data gitir
020 Samples case reports and anecdotes gitir
021 The ethics of making up data gitir
022 Bar plots gitir
023 Code bar plots gitir
024 Box and whisker plots gitir
025 Code box plots gitir
026 Unsupervised learning Boxplots of normal and uniform noise gitir
027 Histograms gitir
028 Code histograms gitir
029 Unsupervised learning Histogram proportion gitir
030 Pie charts gitir
031 Code pie charts gitir
032 When to use lines instead of bars gitir
033 Linear vs logarithmic axis scaling gitir
034 Code line plots gitir
035 Unsupervised learning log scaled plots gitir
036 Descriptive vs inferential statistics gitir
037 Accuracy precision resolution gitir
038 Data distributions gitir
039 Code data from different distributions gitir
040 Unsupervised learning histograms of distributions gitir
041 The beauty and simplicity of Normal gitir
042 Measures of central tendency mean gitir
043 Measures of central tendency median mode gitir
044 Code computing central tendency gitir
045 Unsupervised learning central tendencies with outliers gitir
046 Measures of dispersion variance standard deviation gitir
047 Code Computing dispersion gitir
048 Interquartile range IQR gitir
049 Code IQR gitir
050 QQ plots gitir
051 Code QQ plots gitir
052 Statistical moments gitir
053 Histograms part 2 Number of bins gitir
054 Code Histogram bins gitir
055 Violin plots gitir
056 Code violin plots gitir
057 Unsupervised learning asymmetric violin plots gitir
058 Shannon entropy gitir
059 Code entropy gitir
060 Unsupervised learning entropy and number of bins gitir
061 Garbage in garbage out GIGO gitir
062 Z score standardization gitir
063 Code z score gitir
064 Min max scaling gitir
065 Code min max scaling gitir
066 Unsupervised learning Invert the min max scaling gitir
067 What are outliers and why are they dangerous gitir
068 Removing outliers z score method gitir
069 The modified z score method gitir
070 Code z score for outlier removal gitir
071 Unsupervised learning z vs modified z gitir
072 Multivariate outlier detection gitir
073 Code Euclidean distance for outlier removal gitir
074 Removing outliers by data trimming gitir
075 Code Data trimming to remove outliers gitir
076 Non parametric solutions to outliers gitir
077 Nonlinear data transformations gitir
078 An outlier lecture on personal accountability gitir
079 What is probability gitir
080 Probability vs proportion gitir
081 Computing probabilities gitir
082 Code compute probabilities gitir
083 Probability and odds gitir
084 Unsupervised learning probabilities of odds space gitir
085 Probability mass vs density gitir
086 Code compute probability mass functions gitir
087 Cumulative distribution functions gitir
088 Code cdfs and pdfs gitir
089 Unsupervised learning cdf s for various distributions gitir
090 Creating sample estimate distributions gitir
091 Monte Carlo sampling gitir
092 Sampling variability noise and other annoyances gitir
093 Code sampling variability gitir
094 Expected value gitir
095 Conditional probability gitir
096 Code conditional probabilities gitir
097 Tree diagrams for conditional probabilities gitir
098 The Law of Large Numbers gitir
099 Code Law of Large Numbers in action gitir
100 The Central Limit Theorem gitir
101 Code the CLT in action gitir
102 Unsupervised learning Averaging pairs of numbers gitir
103 IVs DVs models and other stats lingo gitir
104 What is an hypothesis and how do you specify one gitir
105 Sample distributions under null and alternative hypotheses gitir
106 P values definition tails and misinterpretations gitir
107 P z combinations that you should memorize gitir
108 Degrees of freedom gitir
109 Type 1 and Type 2 errors gitir
110 Parametric vs non parametric tests gitir
111 Multiple comparisons and Bonferroni correction gitir
112 Statistical vs theoretical vs clinical significance gitir
113 Cross validation gitir
114 Statistical significance vs classification accuracy gitir
115 Purpose and interpretation of the t test gitir
116 One sample t test gitir
117 Code One sample t test gitir
118 Unsupervised learning The role of variance gitir
119 Two samples t test gitir
120 Code Two samples t test gitir
121 Unsupervised learning Importance of N for t test gitir
122 Wilcoxon signed rank nonparametric t test gitir
123 Code Signed rank test gitir
124 Mann Whitney U test nonparametric t test gitir
125 Code Mann Whitney U test gitir
126 Permutation testing for t test significance gitir
127 Code permutation testing gitir
128 Unsupervised learning How many permutations gitir
129 What are confidence intervals and why do we need them gitir
130 Computing confidence intervals via formula gitir
131 Code compute confidence intervals by formula gitir
132 Confidence intervals via bootstrapping resampling gitir
133 Code bootstrapping confidence intervals gitir
134 Unsupervised learning Confidence intervals for variance gitir
135 Misconceptions about confidence intervals gitir
136 Motivation and description of correlation gitir
137 Covariance and correlation formulas gitir
138 Code correlation coefficient gitir
139 Code Simulate data with specified correlation gitir
140 Correlation matrix gitir
141 Code correlation matrix gitir
142 Unsupervised learning average correlation matrices gitir
143 Unsupervised learning correlation to covariance matrix gitir
144 Partial correlation gitir
145 Code partial correlation gitir
146 The problem with Pearson gitir
147 Nonparametric correlation Spearman rank gitir
148 Fisher Z transformation for correlations gitir
149 Code Spearman correlation and Fisher Z gitir
150 Unsupervised learning Spearman correlation gitir
151 Unsupervised learning confidence interval on correlation gitir
152 Kendall s correlation for ordinal data gitir
153 Code Kendall correlation gitir
154 Unsupervised learning Does Kendall vs Pearson matter gitir
155 The subgroups correlation paradox gitir
156 Cosine similarity gitir
157 Code Cosine similarity vs Pearson correlation gitir
158 ANOVA intro part1 gitir
159 ANOVA intro part 2 gitir
160 Sum of squares gitir
161 The F test and the ANOVA table gitir
162 The omnibus F test and post hoc comparisons gitir
163 The two way ANOVA gitir
164 One way ANOVA example gitir
165 Code One way ANOVA independent samples gitir
166 Code One way repeated measures ANOVA gitir
167 Two way ANOVA example gitir
168 Code Two way mixed ANOVA gitir
169 Introduction to GLM regression gitir
170 Least squares solution to the GLM gitir
171 Evaluating regression models R2 and F gitir
172 Simple regression gitir
173 Code simple regression gitir
174 Unsupervised learning Compute R2 and F gitir
175 Multiple regression gitir
176 Standardizing regression coefficients gitir
177 Code Multiple regression gitir
178 Polynomial regression models gitir
179 Code polynomial modeling gitir
180 Unsupervised learning Polynomial design matrix gitir
181 Logistic regression gitir
182 Code Logistic regression gitir
183 Under and over fitting gitir
184 Unsupervised learning Overfit data gitir
185 Comparing nested models gitir
186 What to do about missing data gitir
187 What is statistical power and why is it important gitir
188 Estimating statistical power and sample size gitir
189 Compute power and sample size using G Power gitir
190 K means clustering gitir
191 Code k means clustering gitir
192 Unsupervised learning K means and normalization gitir
193 Unsupervised learning K means on a Gauss blur gitir
194 Clustering via dbscan gitir
195 Code dbscan gitir
196 Unsupervised learning dbscan vs k means gitir
197 K nearest neighbor classification gitir
198 Code KNN gitir
199 Principal components analysis PCA gitir
200 Code PCA gitir
201 Unsupervised learning K means on PC data gitir
202 Independent components analysis ICA gitir
203 Code ICA gitir
204 The two perspectives of the world gitir
205 d prime gitir
206 Code d prime gitir
207 Response bias gitir
208 Code Response bias gitir
209 F score gitir
210 Receiver operating characteristics ROC gitir
211 Code ROC curves gitir
212 Unsupervised learning Make this plot look nicer gitir
214 Introduction gitir
215 MATLAB Import and clean the marriage data gitir
216 MATLAB Import the divorce data gitir
217 MATLAB More data visualizations gitir
218 MATLAB Inferential statistics gitir
219 Python Import and clean the marriage data gitir
220 Python Import the divorce data gitir
221 Python Inferential statistics gitir
222 Take home messages gitir
Instructors
Enrolment options
Master statistics & machine learning intuition, math, code
Course modified date:
29 Dec 2024
Enrolled students:
There are no students enrolled in this course.
Guests cannot access this course. Please log in.
Continue
Enrol now
This course includes
Forums
Resources
Share this course
Scroll to top
×
Close
×
Close