Skip to navigation
Skip to navigation
Skip to search form
Skip to login form
Skip to footer
Skip to main content
Accessibility options
Accessibility profiles
Visual impairment
Seizure and epileptic
Color vision deficiency
ADHD
Learning
Content adjustments
Readable font
Highlight titles
Highlight links
Stop animations
Text size
+
+ +
+ + +
Line height
+
+ +
+ + +
Text spacing
+
+ +
+ + +
Color adjustments
Dark contrast
Light contrast
High contrast
High saturation
Low saturation
Monochrome
Orientation adjustments
Reading guide
Reading Mask
Big black cursor
Big white cursor
Email: it@huph.edu.vn
Email: it@huph.edu.vn
Các khóa học
Đổi giao diện
Giao diện cũ
Giao diện mới
Learning AI
Machine Learning cơ bản
en
English
AI
Machine Learning
Regression Analysis for Statistics & Machine Learning in R
0 students
Last updated
Jan 2025
Enrol now
Overview
Course content
Instructors
About the course
Show more...
Course content
Sections:
1
•
Activities:
1
•
Resources:
61
Expand all
Section 1
General
Announcements
001 INTRODUCTION TO THE COURSE The Key Concepts and Software Tools TfEk gitir
003 Difference Between Statistical Analysis Machine Learning JQrh gitir
004 Getting Started with R and R Studio StbE gitir
005 Reading in Data with R 11Dc gitir
006 Data Cleaning with R CfWS gitir
007 Some More Data Cleaning with R Sc3L gitir
008 Basic Exploratory Data Analysis in R ZzI8 gitir
009 Conclusion to Section 1 5cIb gitir
010 OLS Regression Theory CJ8S gitir
011 OLS Implementation 5V1n gitir
012 More on Result Interpretations MRn2 gitir
013 Confidence Interval Theory abjh gitir
014 Calculate the Confidence Interval in R asTA gitir
015 Confidence Interval and OLS Regressions 5WD0 gitir
016 Linear Regression without Intercept Uner gitir
017 Implement ANOVA on OLS Regression fRv1 gitir
018 Multiple Linear Regression zmc5 gitir
019 Multiple Linear regression with Interaction and Dummy Variables 6nPl gitir
020 Some Basic Conditions that OLS Models Have to Fulfill mAMA gitir
021 Conclusions to Section 2 F8gG gitir
022 Identify Multicollinearity F29K gitir
023 Doing Regression Analyses with Correlated Predictor Variables MviS gitir
024 Principal Component Regression in R Gj7G gitir
025 Partial Least Square Regression in R XYIg gitir
026 Ridge Regression in R g3co gitir
027 LASSO Regression bEu0 gitir
028 Conclusion to Section 3 xXI9 gitir
029 Why Do Any Kind of Selection fvNZ gitir
030 Select the Most Suitable OLS Regression Model iVcy gitir
031 Select Model Subsets mpAU gitir
032 Machine Learning Perspective on Evaluate Regression Model Accuracy 8xtX gitir
033 Evaluate Regression Model Performance 9FEY gitir
034 LASSO Regression for Variable Selection 2WJM gitir
035 Identify the Contribution of Predictors in Explaining the Variation in Y 3yKI gitir
036 Conclusions to Section 4 m1Zs gitir
037 Data Transformations yWhN gitir
038 Robust Regression Deal with Outliers h3e4 gitir
039 Dealing with Heteroscedasticity 3yii gitir
040 Conclusions to Section 5 n6kc gitir
041 What are GLMs QJB5 gitir
042 Logistic regression ImIe gitir
043 Logistic Regression for Binary Response Variable a45Y gitir
044 Multinomial Logistic Regression DgDd gitir
045 Regression for Count Data 7HAN gitir
046 Goodness of fit testing RhJZ gitir
047 Conclusions to Section 6 Pox2 gitir
049 Polynomial and Non linear regression cwl9 gitir
050 Generalized Additive Models GAMs in R 1iXg gitir
051 Boosted GAM Regression YOZm gitir
052 Multivariate Adaptive Regression Splines MARS oQIq gitir
054 CART Regression Trees in R B1no gitir
055 Conditional Inference Trees DUuv gitir
056 Random Forest RF CBvp gitir
057 Gradient Boosting Regression xRMi gitir
058 ML Model Selection 9unN gitir
059 Conclusions to Section 7 BAnF gitir
060 Read in DTA Extension File iZhD gitir
061 Getting Acquainted with Github Desktop LiBK gitir
062 Using R Colab Up3S gitir
063 Group By Time MPzC gitir
064 POSIT 58IB gitir
Instructors
Enrolment options
Regression Analysis for Statistics & Machine Learning in R
Course modified date:
4 Jan 2025
Enrolled students:
There are no students enrolled in this course.
Guests cannot access this course. Please log in.
Continue
Enrol now
This course includes
Forums
Resources
Share this course
Scroll to top
×
Close
×
Close