Skip to navigation
Skip to navigation
Skip to search form
Skip to login form
Skip to footer
Skip to main content
Accessibility options
Accessibility profiles
Visual impairment
Seizure and epileptic
Color vision deficiency
ADHD
Learning
Content adjustments
Readable font
Highlight titles
Highlight links
Stop animations
Text size
+
+ +
+ + +
Line height
+
+ +
+ + +
Text spacing
+
+ +
+ + +
Color adjustments
Dark contrast
Light contrast
High contrast
High saturation
Low saturation
Monochrome
Orientation adjustments
Reading guide
Reading Mask
Big black cursor
Big white cursor
Email: it@huph.edu.vn
Email: it@huph.edu.vn
Các khóa học
Đổi giao diện
Giao diện cũ
Giao diện mới
en
English
Data Science Courses
Complete Guide to R Wrangling, Visualizing, and Modeling Data
0 students
Last updated
Jan 2025
Enrol now
Overview
Course content
Instructors
About the course
Show more...
Course content
Sections:
13
•
Activities:
0
•
Resources:
70
Expand all
Section 1
Introduction
001 Make your data make sense yPdL gitir
002 Using the exercise files zePH gitir
Section 2
1. What Is R?
003 R in context KzNt gitir
004 Data science with R A case study cGfr gitir
Section 3
2. Getting Started
005 Installing R 9weW gitir
006 Environments for R vMEq gitir
007 Installing RStudio B7Er gitir
008 Navigating the RStudio environment J9z8 gitir
009 Entering data kTtu gitir
010 Data types and structures InaV gitir
011 Comments and headers MloE gitir
012 Packages for R CPs6 gitir
013 The tidyverse pu0f gitir
014 Piping commands with SglL gitir
Section 4
3. Importing Data
015 R s built in datasets DEqw gitir
016 Exploring sample datasets with pacman hvtF gitir
017 Importing data from a spreadsheet gQ0F gitir
018 Importing XML data 07F1 gitir
019 Importing JSON data hOeG gitir
020 Saving data in native R formats REDN gitir
Section 5
4. Visualizing Data with ggplot2
021 Introduction to ggplot2 MmKa gitir
022 Using colors in R mGkg gitir
023 Using color palettes VQCy gitir
024 Creating bar charts xeBw gitir
025 Creating histograms DJus gitir
026 Creating box plots mL9n gitir
027 Creating scatterplots wHH2 gitir
028 Creating multiple graphs x6mc gitir
029 Creating cluster charts mVpc gitir
Section 6
5. Wrangling Data
030 Creating tidy data LmBD gitir
031 Using tibbles H30h gitir
032 Using data table SrYh gitir
033 Converting data from wide to tall and from tall to wide 7NxD gitir
034 Converting data from tables to rows xJmn gitir
035 Working with dates and times hQmk gitir
036 Working with list data JArT gitir
037 Working with XML data hS5N gitir
038 Working with categorical variables yefF gitir
039 Filtering cases and subgroups A2H4 gitir
Section 7
6. Recoding Data
040 Recoding categorical data oXmF gitir
041 Recoding quantitative data 2Obd gitir
042 Transforming outliers sx2f gitir
043 Creating scale scores by counting CH4h gitir
044 Creating scale scores by averaging vOmX gitir
Section 8
7. An R for Data Science Case Study
045 Data science with R A case study J7iI gitir
Section 9
8. Exploring Data
046 Computing frequencies xLVy gitir
047 Computing descriptive statistics Yo7i gitir
048 Computing correlations y83z gitir
049 Creating contingency tables qQMB gitir
050 Conducting a principal component analysis QjaA gitir
051 Conducting an item analysis tEWW gitir
052 Conducting a confirmatory factor analysis rsIL gitir
Section 10
9. Analyzing Data
053 Comparing proportions bCos gitir
054 Comparing one mean to a population One sample t test JYbA gitir
055 Comparing paired means Paired samples t test vHmY gitir
056 Comparing two means Independent samples t test X0fC gitir
057 Comparing multiple means One factor analysis of variance k3k9 gitir
058 Comparing means with multiple categorical predictors Factorial analysis of variance euBT gitir
Section 11
10. Predicting Outcomes
059 Predicting outcomes with linear regression PUtA gitir
060 Predicting outcomes with lasso regression xHbG gitir
061 Predicting outcomes with quantile regression c2nS gitir
062 Predicting outcomes with logistic regression 34n1 gitir
063 Predicting outcomes with Poisson or log linear regression jsBB gitir
064 Assessing predictions with blocked entry models MxHj gitir
Section 12
11. Clustering and Classifying Cases
065 Grouping cases with hierarchical clustering ZZ4n gitir
066 Grouping cases with k means clustering bYEQ gitir
067 Classifying cases with k nearest neighbors V233 gitir
068 Classifying cases with decision tree analysis i5G3 gitir
069 Creating ensemble models with random forest classification hMQY gitir
Section 13
Conclusion
070 Next steps DJlj gitir
Instructors
Enrolment options
Complete Guide to R Wrangling, Visualizing, and Modeling Data
Course modified date:
11 Jan 2025
Enrolled students:
There are no students enrolled in this course.
Guests cannot access this course. Please log in.
Continue
Enrol now
This course includes
Resources
Share this course
Scroll to top
×
Close
×
Close