Skip to navigation
Skip to navigation
Skip to search form
Skip to login form
Skip to footer
Skip to main content
Accessibility options
Accessibility profiles
Visual impairment
Seizure and epileptic
Color vision deficiency
ADHD
Learning
Content adjustments
Readable font
Highlight titles
Highlight links
Stop animations
Text size
+
+ +
+ + +
Line height
+
+ +
+ + +
Text spacing
+
+ +
+ + +
Color adjustments
Dark contrast
Light contrast
High contrast
High saturation
Low saturation
Monochrome
Orientation adjustments
Reading guide
Reading Mask
Big black cursor
Big white cursor
Email: it@huph.edu.vn
Email: it@huph.edu.vn
Các khóa học
Đổi giao diện
Giao diện cũ
Giao diện mới
en
English
Data Science Courses
Data Science Methods and Techniques
0 students
Last updated
Jan 2025
Enrol now
Overview
Course content
Instructors
About the course
Show more...
Course content
Sections:
4
•
Activities:
1
•
Resources:
27
Expand all
Section 1
Introduction
Announcements
001 Introduction 5Sg8 gitir
002 Setup of the Anaconda Cloud Notebook 1yi6 gitir
003 Download and installation of the Anaconda Distribution optional m0mW gitir
004 The Conda Package Management System optional pdAy gitir
Section 2
Regression, Prediction and Supervised Learning
005 Regression Prediction and Supervised Learning Section Overview I mJWA gitir
006 The Traditional Simple Regression Model II 3lSN gitir
007 The Traditional Simple Regression Model III Q7aO gitir
008 Some practical and useful modelling concepts IV HvBR gitir
009 Some practical and useful modelling concepts V RVxr gitir
010 Linear Multiple Regression model VI W5AG gitir
011 Linear Multiple Regression model VII vdse gitir
012 Multivariate Polynomial Multiple Regression models VIII ufPI gitir
013 Multivariate Polynomial Multiple Regression models VIIII QGSX gitir
014 Regression Regularization Lasso and Ridge models X bBVU gitir
015 Decision Tree Regression models XI 5Zsx gitir
016 Random Forest Regression XII Aro8 gitir
017 Voting Regression XIII ckmZ gitir
Section 3
Classification and Supervised Learning
018 Classification and Supervised Learning overview jtNl gitir
019 Logistic Regression Classifier EgTM gitir
020 The Naive Bayes Classifier hJNy gitir
021 The Decision Tree Classifier r1qT gitir
022 The Random Forest Classifier ygMO gitir
024 The Voting Classifier znMF gitir
Section 4
Cluster Analysis and Unsupervised Learning
025 Cluster Analysis an overview tha7 gitir
026 K Means Cluster Analysis and an introduction to auto updated K means algorithms 3te5 gitir
027 Density Based Spatial Clustering of Applications with Noise DBSCAN qi9F gitir
028 Four Hierarchical Clustering algorithms UmGS gitir
Instructors
Enrolment options
Data Science Methods and Techniques
Course modified date:
11 Jan 2025
Enrolled students:
There are no students enrolled in this course.
Guests cannot access this course. Please log in.
Continue
Enrol now
This course includes
Forums
Resources
Share this course
Scroll to top
×
Close
×
Close