Skip to navigation
Skip to navigation
Skip to search form
Skip to login form
Skip to footer
Skip to main content
MVP189
LEO777
LEO777
LEO777
LEO777
LEO777
LEO777
LEO777
LEO777
LEO777
PAREPOS
JAVABET99
KONTAN88
PEWE128
LAGA88
SKY99IDN
BUANA88
BOXING55
DEWISRI88
DEWISRI88
DEWISRI88
MVP189
slot mania
MVP189
situs tergacor
pg slot wallet
Accessibility options
Accessibility profiles
Visual impairment
Seizure and epileptic
Color vision deficiency
ADHD
Learning
Content adjustments
Readable font
Highlight titles
Highlight links
Stop animations
Text size
+
+ +
+ + +
Line height
+
+ +
+ + +
Text spacing
+
+ +
+ + +
Color adjustments
Dark contrast
Light contrast
High contrast
High saturation
Low saturation
Monochrome
Orientation adjustments
Reading guide
Reading Mask
Big black cursor
Big white cursor
Email: it@huph.edu.vn
Email: it@huph.edu.vn
Các khóa học
Link list
Đổi giao diện
Giao diện cũ
Giao diện mới
Learning AI
Machine Learning cơ bản
en
English
Data Analysis
Udemy – Data Analytics Masters – From Basics To Advanced 2025-3
0 students
Last updated
Jul 2025
Enrol now
Overview
Course content
Instructors
About the course
Udemy – Data Analytics Masters – From Basics To Advanced 2025-3
Show more...
Course content
Sections:
11
•
Activities:
1
•
Resources:
260
Expand all
Section 1
Introduction
Announcements
3 What is Data Analytics
4 Importance of Data Analytics
5 Types of Data
6 Types of Statistical Analysis
7 Steps to obtain a Data Analytics solution
8 Business Understanding
9 Data Understanding
10 Data Collection
11 Data Preparation
12 Data Modelling
13 Deployment
14 Use Case
Section 2
Python
2 Lets install Python together
3 Google Colab whats that
4 Lets get familiar with chatGPT
5 Introduction to Python
6 Variables Keywords
7 Datatypes Operators
8 Lists
9 Tuples
10 Sets
11 Dictionary
12 Loops Iteration
13 Functions
14 Map Reduce Filter
15 File Handling
16 Control Structures
17 OOPS
18 NumPy
19 Pandas
20 Data Visualization
21 Matplotlib
22 Seaborn
Section 3
Business Statistics
2 Introduction
3 Types of Data Agenda
4 Descriptive Stats
5 Inferential Stats
6 Qualitative Data
7 Quantitative Data
8 Sampling Techniques Agenda
9 Population vs Sample
10 Why Sampling is important
11 Types of Sampling
12 Cluster Random Sampling
13 Probability Sampling
14 Non probability sampling
15 Population Sampling
16 Why n 1 and not n
17 Descriptive Analytics Agenda
18 Measures of Central Tendency
19 Mean
20 Median
21 Mode
22 Measures of Dispersion
23 Range
24 IQR
25 Variance Standard Deviation
26 Mean Deviation
27 Probability Agenda
28 Probability
29 Addition Rule
30 Independent Events
31 Cumulative Probability
32 Conditional Probability
33 Bayes Theorem 1
34 Bayes Theorem 2
35 Probability Distrubution Agenda
36 Uniform Distribution
37 Binomial Distribution
38 Poisson Distribution
39 Normal Distribution Part 1
40 Normal Distribution Part 2
41 Skewness
42 Kurtosis
43 Calculating Probability with Z score for Normal Distribution Part 1
44 Calculating Probability with Z score for Normal Distribution Part 2
45 Calculating Probability with Z score for Normal Distribution Part 3
46 Covariance Correlation Agenda
47 Covariance
48 Correlation
49 Covariance VS Correlation
50 Hypothesis Testing
51 Tailed Tests
52 p value
53 Types of Test
54 T Test
55 Z Test
56 ANOVA
57 Chi Square Test
58 Correlation Test Practicals
Section 4
Exploratory Data Analysis
2 Agenda
3 DADS Process
4 What is EDA
5 Visualization
6 Steps involved in EDA Data Sourcing
7 Steps involved in EDA Data Cleaning
8 Handle Missing Values Theory
9 Handle Missing Values Practicals
10 Feature Scaling Theory
11 Standardization Example
12 Normalization Example
13 Feature Scaling Practicals
14 Outlier Treatment Theory
15 Outlier Treatment Practicals
16 Invalid Data
17 Types of Data
18 Types of Analysis
19 Univariate Analysis
20 Bivariate Analysis
21 Multivariate Analysis
22 Numerical Analysis
23 Analysis Practicals
24 Derived Metrics
25 Feature Binning Theory
26 Feature Binning Practicals
27 Feature Encoding Theory
28 Feature Encoding Practicals
29 Case Study
30 Data Exploration
31 Data Cleaning
32 Univariate Analysis
33 Bivariate Analysis Part 1
34 Bivariate Analysis Part 2
35 EDA Report
Section 5
SQL
2 Installation
3 Data Architecture File server vs client server
4 Introduction to SQL
5 Constraints in SQL
6 Table Basics DDLs
7 Table Basics DQLs
8 Table Basics DMLs
9 Joins
10 Data Import Export
11 Aggregation Functions
12 String functions
13 Date Time Functions
14 Regular Expressions
15 Nested Queries
16 Views
17 Stored Procedures
18 Windows Function
19 SQL Python connectivity
Section 6
Microsoft Excel
2 Pre defined Functions
3 Datetime Functions
4 String Functions
5 Mathematical Functions
6 Lookup HlookupVlookup
7 Logical Error Functions
8 Statistical Functions
9 Images in Excel
10 Excel Formatting
11 Custom Formatting
12 Conditional Formatting
13 Charts in Excel
14 Data Analysis using Excel
15 Pivot Tables
16 Dashboarding in Excel
17 Others
18 What If Tools Scenario Manager Goal Seek
Section 7
Power BI
2 Introduction
3 Life Hack How to have Power BI Pro License
4 Power BI Desktop
5 Power BI Services
6 Power Query Editor
7 Data Profiling
8 Group by Dialog
9 Applied Steps
10 Append vs Merge
11 Power BI Visuals
12 Power BI Charts
13 Introduction to DAX
14 Implicit Measures
15 DAX Formula
16 Basic DAX Functions
17 Date Functions
18 CALENDAR Functions
19 Contexts Row vs Filter
20 CALCULATE FILTER
21 IF ELSE Conditions
22 Time Intelligence Functions
23 X vs Non X Functions
24 Tool Tips Drill Throughs
25 Power BI Relationships
26 KPIs in Power BI
27 Administration in Power BI
28 Static Row Level Security
29 Dynamic Row Level Security
30 Dataflows in Power BI
31 Formatting
32 Best Practices
33 EDA
34 Live Projects
Section 8
Tableau
2 What is Data Visualization
3 BI Process
4 What is Tableau
5 Features of Tableau
6 How to use Tableau
7 Tableau Architecture
8 Tableau Desktop
9 Tableau vs Power BI
10 Relationships Joins Unions
11 Sets in Tableau
12 Groups in Tableau
13 Hierarchies in Tableau
14 Filters in Tableau
15 Highlighting
16 Device Deisgner
17 Parameters
18 Data Blending
19 Transparency
20 Date Aggregation
21 Generated Fields
22 Discrete vs Continuous
23 Charts in Tableau
24 Pivot Tables in Tableau
25 LOD Expressions
26 Calculated Fields
27 Formatting
28 Forecasting in Tableau
29 Analytics in Tableau
30 Dashboarding
Section 9
Predictive Analytics
2 Introduction
3 Predictive Analytics Process
4 How model works
5 Why Predictive Analytics
6 Applications
7 What is Machine Learning
8 Types Of Machine Learning
9 Classification
10 KNN
11 KNN Excel example
12 Classification Practical
13 KNN Code
14 Decision Tree Example
15 Decision Tree Code
16 Random Forest
17 Random Forest Code
18 Boosting
19 Boosting Code
20 Regression Theory
21 Regression Practicals
22 Clustering
23 Clustering Practicals
24 Time Series
25 Time Series Forecasting Code
Section 10
ETL
2 Introduction
3 What is ETL
4 ETL Tools
5 What is Data Warehouse
6 Benefits of Data Warehouse
7 Data Warehouse Structure
8 Why do we need Staging
9 What are Data Marts
10 Data Lake
11 Data lake vs Data Warehouse
12 Elements of Data lake
Section 11
Capstone Projects
1 Welcome
2 Churn Analysis Power BI
3 Banking Risk Analysis Power BI Part 1
4 Banking Risk Analysis Power BI Part 2
Instructors
Enrolment options
Udemy – Data Analytics Masters – From Basics To Advanced 2025-3
Course modified date:
6 July 2025
Udemy – Data Analytics Masters – From Basics To Advanced 2025-3
Enrolled students:
There are no students enrolled in this course.
Guests cannot access this course. Please log in.
Continue
Enrol now
This course includes
Forums
Resources
Share this course
Scroll to top
×
Close
×
Close