Skip to navigation
Skip to navigation
Skip to search form
Skip to login form
Skip to footer
Skip to main content
MVP189
LEO777
LEO777
LEO777
LEO777
LEO777
LEO777
LEO777
LEO777
LEO777
PAREPOS
JAVABET99
KONTAN88
PEWE128
LAGA88
SKY99IDN
BUANA88
BOXING55
DEWISRI88
DEWISRI88
DEWISRI88
MVP189
slot mania
MVP189
situs tergacor
pg slot wallet
Accessibility options
Accessibility profiles
Visual impairment
Seizure and epileptic
Color vision deficiency
ADHD
Learning
Content adjustments
Readable font
Highlight titles
Highlight links
Stop animations
Text size
+
+ +
+ + +
Line height
+
+ +
+ + +
Text spacing
+
+ +
+ + +
Color adjustments
Dark contrast
Light contrast
High contrast
High saturation
Low saturation
Monochrome
Orientation adjustments
Reading guide
Reading Mask
Big black cursor
Big white cursor
Email: it@huph.edu.vn
Email: it@huph.edu.vn
Các khóa học
Link list
Đổi giao diện
Giao diện cũ
Giao diện mới
Learning AI
Machine Learning cơ bản
en
English
Data Science Courses
Udemy - Data Analysis Bootcamp - 21 Real World Case Studies 2020-4
1 students
Last updated
Feb 2024
Enrol now
Overview
Course content
Instructors
About the course
Show more...
Course content
Sections:
39
•
Activities:
0
•
Resources:
119
Expand all
Section 1
01 Course Introduction the Importance of Data Analysts
001 Course Introduction
002 The Importance of Data Analyst
003 Why Data is the new Oil
004 Making Sense of Buzz Words Data Science Big Data Machine Deep Learning.mp4
005 The Roles in the Data World - Analyst Engineer Scientist Statistician DevOps
Section 2
02 Download Code and Slides and Setup Google Colab
006 Download Code and Slides
007 Slides-Data-Analytics-Bootcamp
007 Download Course Code Slides and Setup Google Colab for your iPython Notebooks
Download
Section 3
03 Python Crash Course
008 Why use Python for Data Anakytics and Data Science
009 Python - Basic Variables
010 Python - ArrayLists and Dictionaries
011 Python - Conditional Statements
012 Python - Loops
013 Python - Functions
014 Python - Classes
Section 4
04 Pandas - Data Series and Manipulation
015 Introduction to Pandas
016 Pandas 1 - Data Series
017 Pandas 2A - DataFrames - Index Slice Stats Finding Empty cells Filtering
018 Pandas 2B - DataFrames - Index Slice Stats Finding Empty cells Filtering
Section 5
05 Pandas - Data Cleaning Aggregration
019 Pandas 3B - Data Cleaning - Alter ColomnsRows Missing Data String Operations
020 Pandas 3A Data Cleaning Alter Colomns RowsMissingDataStringOperations
021 Pandas 4 Data Aggregation Group By Map Pivot Aggreate Functions
Section 6
06 Pandas - Feature Engineering JoinsMergeConcatenating
022 Pandas 5 - Feature Engineer Lambda and Apply
023 Pandas 6 - Concatenating Merging and Joinining.mp4
Section 7
07 Pandas - Time Series Data
024 Pandas 7 - Time Series Data
Section 8
08 Advanced Pandas
025 Pandas 7 - ADVANCED Operations - Iterows Vectorization and Numpy
026 Pandas 8 - ADVANCED Operations - More Map Zip and Apply
027 Pandas 9 - Advanced Operations - Parallel Processing
Section 9
09 Map Visualizations
028 Map Visualizations with Plotly - Cloropeths from Scratch - USA and World
029 Map Visualizations with Plotly - Heatmaps Scatter Plots and Lines
Section 10
10 Statistics for Data Analysts Visualizations
030 Introduction to Statistics
031 Descriptive Statistics - Why Statistical Knowledge is so Important
032 Descriptive Statistics 1 - Exploratory Data Analysis (EDA) Visualizations
033 Descriptive Statistics 2 - Exploratory Data Analysis (EDA) Visualizations
034 Sampling Averages Variance And How to lie and Mislead with Statistics
035 Variance Standard Deviation and Bessels Correction
036 Types of Variables - Quantitive and Qualitative.
037 Frequency Distributions
038 Frequency Distributions Shapes
039 Analyzing Frequency Distributions - What is the Best Type of Wine Red or White
040 Covariance Correlation - Do Amazon Google know you better than anyone else
041 Sampling - Sample Sizes Confidence Intervals - What Can You Trust
042 Mean Mode and Median - Not as Simple As Youd Think
043 The Normal Distribution the Central Limit Theorem
044 Lying with Correlations Divorce Rates in Maine caused by Margarine Consumption
045 Z-Scores
Section 11
11 Probability Theory
11 Probability Theory/046 Probability - An Introduction
047 Estimating Probability
048 Addition Rule
049 Permutations Combinations
050 Bayes Theorem
Section 12
12 Hypothesis Testing
051 Hypothesis Testing Introduction
052 Statistical Significance
053 Hypothesis Testing P Value
054 Hypothesis Testing Pearson Correlation
Section 13
13 Google Data Studio - Introduction Setup
055 All about Google Data Studio
056 Opening Google Data Studio and Uploading Data
Section 14
14 Google Data Studio - Your First Dashboard
057 Your First Dashboard Part 1
058 Your First Dashboard Part 2
059 Creating New Fields
Section 15
15 Google Data Studio - Pivot Dynamic Tables (with Filters)
060 Pivot Tables
061 Dynamic Filtered Tables
Section 16
16 Google Data Studio - Scorecards and Time Comparison
062 Scorecards
063 Scorecards with Time Comparison
Section 17
17 Google Data Studio - Bar Charts Line Charts and Time Series Plots
064 Bar Charts
065 Line Charts
066 Time Series and Comparitive Time Series Plots
Section 18
18 Google Data Studio - Pie charts Donut Charts Treemaps Scatter Plots
067 Pie Charts Donut Charts and Tree Maps
068 Scatter Plots
Section 19
19 Google Data Studio - Geographic Map Plots
069 Google Data Studio - Geographic Map Plots
Section 20
20 Google Data Studio - Bullet and Line Area Plots
070 Google Data Studio - Scatter Plots
Section 21
21 Google Data Studio - Sharing your Interactive Dashboards
071 Google Data Studio - Sharing your Interactive Dashboards
Section 22
22 Retail Sales Dashboard for Executives
072 Homework Project - Create Executive Sales Dashboard
Section 23
23 Introduction to Machine Learning
073 How Machine Learning enables Computers to Learn
074 What is a Machine Learning Model.
075 Types of Machine Learning
Section 24
24 Linear Regressions
076 Linear Regression Introduction to Cost Functions and Gradient Descent
077 Linear Regressions in Python from Scratch and using Sklearn
078 Polynomial and Multivariate Linear Regression
Section 25
25 Classification - Logistic Regression SVM Decision Trees Random Forets KNN
079 Logistic Regression
080 Support Vector Machines (SVMs)
081 Decision Trees and Random Forests the Gini Index
082 K-Nearest Neighbors (KNN)
Section 26
26 Assessing Model Performance
083 Assessing Performance Confusion Matrix Precision and Recall
084 Understanding the ROC and AUC Curve
085 What Makes a Good Model Regularization Overfitting Generalization Outliers
Section 27
27 Neural Networks Overview
086 Introduction to Neural Networks
087 Types of Deep Learning Algoritms CNNs RNNs LSTMs
Section 28
28 Unsupervised Learning
088 Introduction to Unsupervised Learning
089 K-Means Clustering
090 Choosing K Elbow Method Silhouette Analysis
091 K-Means in Python - Choosing K using the Elbow Method Silhoutte Analysis
Section 29
29 Dimensionality Reduction
092 Principal Component Analysis
093 t-Distributed Stochastic Neighbor Embedding (t-SNE)
094 PCA t-SNE in Python with Visualization Comparisons
Section 30
30 Case Study 1 - Airbnb Sydney Exploratory Data Analysis
096 Understanding the Problem Exploratory Data Analysis and Visualizations
Section 31
31 Case Study 2 - Retail Product Sales Analytics
097 Data Cleaning and Preparation
098 Sales and Revenue Analysis
099 Analysis per Country Repeat Customers and Items
Section 32
32 Case Study 3 - Marketing Analytics - What Drives Ad Performance
100 Understanding the Problem Exploratory Data Analysis and Visualizations
101 Data Preparation and Machine Learning Modeling
Section 33
33 Case Study 4 - Customer Clustering for Travel Agency Customers
102 Data Exploration Description
103 Simple Exploratory Data Analysis and Visualizations
104 Feature Engineering
105 K-Means Clustering of Customer Data
106 Cluster Analysis
Section 34
34 Case Study 5 - Text Analytics - Airline Tweets (Word Clusters)
107 Case Study 5 - Text Analytics - Airline Tweets (Word Clusters)
Section 35
35 Case Study 6 - Customer Lifetime Value (CLV)
108 Understanding the Problem Exploratory Data Analysis and Visualizations
109 Customer Lifetime Value Modeling
Section 36
36 Case Study 7 - Health Care Analytics - Predict Diabetes
110 Healthcare Analytics - Predict Diabetes
Section 37
38 Case Study 9 - E6 US President Election Analysis
112 Case Study 9 - Election Polls - Making Better Predictions
Section 38
49 Case Study 20 - Predicting Insurance Premiums
123 Understanding the Problem Exploratory Data Analysis and Visualizations
124 Data Preparation and Machine Learning Modeling
Section 39
50 Case Study 21 AB Testing
125 Understanding the Problem Exploratory Data Analysis and Visualizations
126 AB Test Result Analysis
127 AB Testing a Worked Real Life Example - Designing an AB Test
128 Statistical Power and Significance
129 Analysis of AB Test Resutls
Instructors
Enrolment options
Udemy - Data Analysis Bootcamp - 21 Real World Case Studies 2020-4
Course modified date:
10 Feb 2024
Enrolled students:
1
Guests cannot access this course. Please log in.
Continue
Enrol now
This course includes
Resources
Share this course
Scroll to top
×
Close
×
Close