Skip to navigation
Skip to navigation
Skip to search form
Skip to login form
Skip to footer
Skip to main content
Accessibility options
Accessibility profiles
Visual impairment
Seizure and epileptic
Color vision deficiency
ADHD
Learning
Content adjustments
Readable font
Highlight titles
Highlight links
Stop animations
Text size
+
+ +
+ + +
Line height
+
+ +
+ + +
Text spacing
+
+ +
+ + +
Color adjustments
Dark contrast
Light contrast
High contrast
High saturation
Low saturation
Monochrome
Orientation adjustments
Reading guide
Reading Mask
Big black cursor
Big white cursor
Email: it@huph.edu.vn
Email: it@huph.edu.vn
Các khóa học
Đổi giao diện
Giao diện cũ
Giao diện mới
Learning AI
Machine Learning cơ bản
en
English
AI
Machine Learning
Machine Learning A-Z AI, Python & R and ChatGPT Bonus
2 students
Last updated
Apr 2024
Enrol now
Overview
Course content
Instructors
About the course
Show more...
Course content
Sections:
38
•
Activities:
0
•
Resources:
339
Expand all
Section 1
Welcome to the course! Here we will help you get started in the best conditions.
002-Machine Learning Demo Get Excited
004-How to use the ML A Z folder Google Colab
005-Installing R and R Studio Mac Linux Windows
Section 2
Part 1: Data Preprocessing
008-The Machine Learning process
009-Splitting the data into a Training and Test set
010-Feature Scaling
Section 3
Data Preprocessing in Python
011-Getting Started Step 1
012-Getting Started Step 2
013-Importing the Libraries
014-Importing the Dataset Step
015-Importing the Dataset Step 2
016-Importing the Dataset Step 3
019-Taking care of Missing Data Step 1
020-Taking care of Missing Data Step 2
022-Encoding Categorical Data Step 1
023-Encoding Categorical Data Step 2
024-Encoding Categorical Data Step 3
026-Splitting the dataset into the Training set and Test set Step 1
027-Splitting the dataset into the Training set and Test set Step 2
028-Splitting the dataset into the Training set and Test set Step 3
030-Feature Scaling Step 1
031-Feature Scaling Step 2
032-Feature Scaling Step 3
033-Feature Scaling Step 4
Section 4
Data Preprocessing in R
035-Getting Started
036-Dataset Description
037-Importing the Dataset
038-Taking care of Missing Data
039-Encoding Categorical Data
040-Splitting the dataset into the Training set and Test set Step 1
041-Splitting the dataset into the Training set and Test set Step 2
042-Feature Scaling Step 1
043-Feature Scaling Step 2
044-Data Preprocessing Template
Section 5
Simple Linear Regression
047-Simple Linear Regression Intuition
048-Ordinary Least Squares
049-Simple Linear Regression in Python Step 1a
050-Simple Linear Regression in Python Step 1b
051-Simple Linear Regression in Python Step 2a
052-Simple Linear Regression in Python Step 2b
053-Simple Linear Regression in Python Step 3
055-Simple Linear Regression in Python Step 4b
057-Simple Linear Regression in R Step 1
058-Simple Linear Regression in R Step 2
059-Simple Linear Regression in R Step 3
060-Simple Linear Regression in R Step 4a
061-Simple Linear Regression in R Step 4b
Section 6
Multiple Linear Regression
063-Dataset Business Problem Description
064-Multiple Linear Regression Intuition
065-Assumptions of Linear Regression
066-Multiple Linear Regression Intuition Step 3
067-Multiple Linear Regression Intuition Step 4
068-Understanding the P Value
069-Multiple Linear Regression Intuition Step 5
070-Multiple Linear Regression in Python Step 1a
071-Multiple Linear Regression in Python Step 1b
072-Multiple Linear Regression in Python Step 2a
073-Multiple Linear Regression in Python Step 2b
074-Multiple Linear Regression in Python Step 3a
075-Multiple Linear Regression in Python Step 3b
076-Multiple Linear Regression in Python Step 4a
077-Multiple Linear Regression in Python Step 4b
080-Multiple Linear Regression in R Step 1a
081-Multiple Linear Regression in R Step 1b
082-Multiple Linear Regression in R Step 2a
083-Multiple Linear Regression in R Step 2b
084-Multiple Linear Regression in R Step 3
085-Multiple Linear Regression in R Backward Elimination HOMEWORK
086-Multiple Linear Regression in R Backward Elimination Homework Solution
087-Multiple Linear Regression in R Automatic Backward Elimination
Section 7
Polynomial Regression
090-Polynomial Regression in Python Step 1a
091-Polynomial Regression in Python Step 1b
092-Polynomial Regression in Python Step 2a
093-Polynomial Regression in Python Step 2b
094-Polynomial Regression in Python Step 3a
095-Polynomial Regression in Python Step 3b
096-Polynomial Regression in Python Step 4a
097-Polynomial Regression in Python Step 4b
098-Polynomial Regression in R Step 1a
099-Polynomial Regression in R Step 1b
100-Polynomial Regression in R Step 2a
101-Polynomial Regression in R Step 2b
102-Polynomial Regression in R Step 3a
103-Polynomial Regression in R Step 3b
104-Polynomial Regression in R Step 3c
105-Polynomial Regression in R Step 4a
106-Polynomial Regression in R Step 4b-
107-R Regression Template Step 1
108-R Regression Template Step 2
Section 8
Support Vector Regression (SVR)
110-SVR Intuition Updated
111-Heads up on non linear SVR
110-SVR Intuition Updated
113-SVR in Python Step 1b
114-SVR in Python Step 2a
115-SVR in Python Step 2b
116-SVR in Python Step 2c
117-SVR in Python Step 3
118-SVR in Python Step 4
119-SVR in Python Step 5a
120-SVR in Python Step 5b
121-SVR in R Step 1
122-SVR in R Step 2
Section 9
Decision Tree Regression
124-Decision Tree Regression Intuition-
125-Decision Tree Regression in Python Step 1a
126-Decision Tree Regression in Python Step 1b
127-Decision Tree Regression in Python Step 2
128-Decision Tree Regression in Python Step 3
129-Decision Tree Regression in Python Step 4
130-Decision Tree Regression in R Step 1
131-Decision Tree Regression in R Step 2
133-Decision Tree Regression in R Step 4
Section 10
Random Forest Regression
135-Random Forest Regression Intuition
136-Random Forest Regression in Python Step 1
137-Random Forest Regression in Python Step 2
138-Random Forest Regression in R Step 1
139-Random Forest Regression in R Step 2
140-Random Forest Regression in R Step 3
Section 11
Evaluating Regression Models Performance
142-R Squared Intuition
143-Adjusted R Squared Intuition
Section 12
Regression Model Selection in Python
146-Preparation of the Regression Code Templates Step 1
147-Preparation of the Regression Code Templates Step 2
148-Preparation of the Regression Code Templates Step 3
149-Preparation of the Regression Code Templates Step 4
150-THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION STEP 1
151-THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION STEP 2
Section 13
Regression Model Selection in R
153-Evaluating Regression Models Performance Homework s Final Part
154-Interpreting Linear Regression Coefficients
Section 14
Logistic Regression
157-What is Classification
158-Logistic Regression Intuition
159-Maximum Likelihood
60-Logistic Regression in Python Step 1a
161-Logistic Regression in Python Step 1b
162-Logistic Regression in Python Step 2a
163-Logistic Regression in Python Step 2b
164-Logistic Regression in Python Step 3a
165-Logistic Regression in Python Step 3b
166-Logistic Regression in Python Step 4a
167-Logistic Regression in Python Step 4b
168-Logistic Regression in Python Step 5
169-Logistic Regression in Python Step 6a
170-Logistic Regression in Python Step 6b
171-Logistic Regression in Python Step 7a
172-Logistic Regression in Python Step 7b
173-Logistic Regression in Python Step 7c
175-Logistic Regression in R Step 1
176-Logistic Regression in R Step 2
177-Logistic Regression in R Step 3
178-Logistic Regression in R Step 4
180-Logistic Regression in R Step 5a
181-Logistic Regression in R Step 5b
182-Logistic Regression in R Step 5c
184-R Classification Template
Section 15
K-Nearest Neighbors (K-NN)
188-K Nearest Neighbor Intuition
189-K NN in Python Step 1
190-K NN in Python Step 2
191-K NN in Python Step 3
192-K NN in R Step 1
193-K NN in R Step 2
194-K NN in R Step 3
Section 16
Support Vector Machine (SVM)
196-SVM Intuition
197-SVM in Python Step 1
198-SVM in Python Step 2
199-SVM in Python Step 3
200-SVM in R Step 1
201-SVM in R Step 2
Section 17
Kernel SVM
203-Kernel SVM Intuition
204-Mapping to a higher dimension
205-The Kernel Trick
206-Types of Kernel Functions
207-Non Linear Kernel SVR Advanced
208-Kernel SVM in Python Step 1
209-Kernel SVM in Python Step 2
210-Kernel SVM in R Step 1
211-Kernel SVM in R Step 2
212-Kernel SVM in R Step 3
Section 18
Naive Bayes
214-Bayes Theorem
215-Naive Bayes Intuition
216-Naive Bayes Intuition Challenge Reveal
217-Naive Bayes Intuition Extras
218-Naive Bayes in Python Step 1
219-Naive Bayes in Python Step 2
220-Naive Bayes in Python Step 3
221-Naive Bayes in R Step 1
222-Naive Bayes in R Step 2
223-Naive Bayes in R Step 3
Section 19
Decision Tree Classification
225-Decision Tree Classification Intuition
226-Decision Tree Classification in Python Step 1
227-Decision Tree Classification in Python Step 2
228-Decision Tree Classification in R Step 1
229-Decision Tree Classification in R Step 2
230-Decision Tree Classification in R Step 3
Section 20
Random Forest Classification
232-Random Forest Classification Intuition
233-Random Forest Classification in Python Step 1
234-Random Forest Classification in Python Step 2
235-Random Forest Classification in R Step 1
236-Random Forest Classification in R Step 2
237-Random Forest Classification in R Step 3
Section 21
Classification Model Selection in Python
240-Confusion Matrix Accuracy Ratios
241-ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION STEP 1
242-ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION STEP 2
243-ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION STEP 3
244-ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION STEP 4
Section 22
Evaluating Classification Models Performance
245-False Positives False Negatives
246-Accuracy Paradox
247-CAP Curve
248-CAP Curve Analysis
Section 23
K-Means Clustering
252-What is Clustering Supervised vs Unsupervised Learning
253-K Means Clustering Intuition
254-The Elbow Method
255-K Means
257-K Means Clustering in Python Step 1b
258-K Means Clustering in Python Step 2a
259-K Means Clustering in Python Step 2b
260-K Means Clustering in Python Step 3a
261-K Means Clustering in Python Step 3b
262-K Means Clustering in Python Step 3c
263-K Means Clustering in Python Step 4
264-K Means Clustering in Python Step 5a
265-K Means Clustering in Python Step 5b
266-K Means Clustering in Python Step 5c
267-K Means Clustering in R Step 1
268-K Means Clustering in R Step 2
Section 24
Hierarchical Clustering
270-Hierarchical Clustering Intuition
271-Hierarchical Clustering How Dendrograms Work
272-Hierarchical Clustering Using Dendrograms
273-Hierarchical Clustering in Python Step 1
274-Hierarchical Clustering in Python Step 2a
275-Hierarchical Clustering in Python Step 2b
276-Hierarchical Clustering in Python Step 2c
278-Hierarchical Clustering in Python Step 3b
279-Hierarchical Clustering in R Step 1
280-Hierarchical Clustering in R Step 2
281-Hierarchical Clustering in R Step 3
282-Hierarchical Clustering in R Step 4
283-Hierarchical Clustering in R Step 5
Section 25
Apriori
287-Apriori Intuition
288-Apriori in Python Step 1
289-Apriori in Python Step 2
290-Apriori in Python Step 3
291-Apriori in Python Step 4
292-Apriori in R Step 1
293-Apriori in R Step 2
294-Apriori in R Step 3
Section 26
Eclat
296-Eclat Intuiti
297-Eclat in Python
298-Eclat in R
Section 27
Upper Confidence Bound (UCB)
301-The Multi Armed Bandit Problem
302-Upper Confidence Bound UCB Intuition
303-Upper Confidence Bound in Python Step 1
304-Upper Confidence Bound in Python Step 2
305-Upper Confidence Bound in Python Step 3
306-Upper Confidence Bound in Python Step 4
307-Upper Confidence Bound in Python Step 5
308-Upper Confidence Bound in Python Step 6
309-Upper Confidence Bound in Python Step 7
310-Upper Confidence Bound in R Step 1
311-Upper Confidence Bound in R Step 2
312-Upper Confidence Bound in R Step 3
313-Upper Confidence Bound in R Step 4
Section 28
Thompson Sampling
315-Thompson Sampling Intuition
316-Algorithm Comparison UCB vs Thompson Sampling
317-Thompson Sampling in Python Step 1
318-Thompson Sampling in Python Step 2
319-Thompson Sampling in Python Step 3
320-Thompson Sampling in Python Step 4
322-Thompson Sampling in R Step 1
323-Thompson Sampling in R Step 2
Section 29
Part 7: Natural Language Processing
325-Welcome to Part 7 Natural Language Processing
327-Types of Natural Language Processing
328-Classical vs Deep Learning Models
329-Bag Of Words Model
330-Natural Language Processing in Python Step 1
331-Natural Language Processing in Python Step 2
332-Natural Language Processing in Python Step 3
333-Natural Language Processing in Python Step 4
334-Natural Language Processing in Python Step 5
335-Natural Language Processing in Python Step 6
338-Natural Language Processing in R Step 1
340-Natural Language Processing in R Step 2
341-Natural Language Processing in R Step 3
342-Natural Language Processing in R Step 4
343-Natural Language Processing in R Step 5
344-Natural Language Processing in R Step 6
345-Natural Language Processing in R Step 7
346-Natural Language Processing in R Step 8
347-Natural Language Processing in R Step 9
348-Natural Language Processing in R Step 10
Section 30
Part 8: Deep Learning
352-What is Deep Learning
Section 31
Artificial Neural Networks
354-Plan of attack
355-The Neuron
356-The Activation Function
357-How do Neural Networks work
358-How do Neural Networks learn
359-Gradient Descent
360-Stochastic Gradient Descent
361-Backpropagation
362-Business Problem Description
363-ANN in Python Step 1
364-ANN in Python Step 2
365-ANN in Python Step 3
366-ANN in Python Step 4
367-ANN in Python Step 5
368-ANN in R Step 1
369-ANN in R Step 2
370-ANN in R Step 3
371-ANN in R Step 4 Last step
Section 32
Convolutional Neural Networks
375-Plan of attack
376-What are convolutional neural networks
377-Step 1 Convolution Operation
378-Step 1 b
379-Step 2 Pooling
380-Step 3 Flattening
381-Step 4 Full Connection
382-Summary
383-Softmax Cross Entropy
384-CNN in Python Step 1
385-CNN in Python Step 2
386-CNN in Python Step 3
387-CNN in Python Step 4
388-CNN in Python Step 5
389-CNN in Python FINAL DEMO
Section 33
Principal Component Analysis (PCA)
393-Principal Component Analysis PCA Intuition
394-PCA in Python Step 1
395-PCA in Python Step 2
396-PCA in R Step 1
397-PCA in R Step 2
398-PCA in R Step 3
Section 34
Linear Discriminant Analysis (LDA)
400-Linear Discriminant Analysis LDA Intuition
401-LDA in Python
402-LDA in R
Section 35
Kernel PCA
404-Kernel PCA in Python
405-Kernel PCA in R
Section 36
Model Selection
407-k Fold Cross Validation in Python
408-Grid Search in Python
409-k Fold Cross Validation in R
410-Grid Search in R
Section 37
XGBoost
411-XGBoost in Python
413-XGBoost in R
Section 38
Annex: Logistic Regression (Long Explanation)
415-Logistic Regression Intuition
Instructors
Enrolment options
Machine Learning A-Z AI, Python & R and ChatGPT Bonus
Course modified date:
7 Apr 2024
Enrolled students:
2
Guests cannot access this course. Please log in.
Continue
Enrol now
This course includes
Resources
Share this course
Scroll to top
×
Close
×
Close