Skip to navigation
Skip to navigation
Skip to search form
Skip to login form
Skip to footer
Skip to main content
MVP189
LEO777
LEO777
LEO777
LEO777
LEO777
LEO777
LEO777
LEO777
LEO777
PAREPOS
JAVABET99
KONTAN88
PEWE128
LAGA88
SKY99IDN
BUANA88
BOXING55
DEWISRI88
DEWISRI88
DEWISRI88
MVP189
slot mania
MVP189
situs tergacor
pg slot wallet
Accessibility options
Accessibility profiles
Visual impairment
Seizure and epileptic
Color vision deficiency
ADHD
Learning
Content adjustments
Readable font
Highlight titles
Highlight links
Stop animations
Text size
+
+ +
+ + +
Line height
+
+ +
+ + +
Text spacing
+
+ +
+ + +
Color adjustments
Dark contrast
Light contrast
High contrast
High saturation
Low saturation
Monochrome
Orientation adjustments
Reading guide
Reading Mask
Big black cursor
Big white cursor
Email: it@huph.edu.vn
Email: it@huph.edu.vn
Các khóa học
Link list
Đổi giao diện
Giao diện cũ
Giao diện mới
Learning AI
Machine Learning cơ bản
en
English
Data Analysis
Complete Time Series Forecasting Bootcamp in Python (2025)
0 students
Last updated
Jul 2025
Enrol now
Overview
Course content
Instructors
About the course
Complete Time Series Forecasting Bootcamp in Python (2025)
Show more...
Course content
Sections:
9
•
Activities:
1
•
Resources:
85
Expand all
Section 1
Introduction
Announcements
001 Welcome gJjh gitir
002 Defining time series sjII gitir
003 Baseline models J4oO gitir
004 Code Baseline models pfE7 gitir
Section 2
The random walk model
005 Introducing the random walk 4HGk gitir
006 Code Simulate a random walk jLYZ gitir
007 Stationarity and differencing QDG7 gitir
008 Code Stationarity and differencing vfXl gitir
009 Autocorrelation UloD gitir
010 Code Autocorrelation DXWW gitir
011 Forecasting a random walk luOZ gitir
012 Code Forecasting a random walk ELus gitir
Section 3
Forecasting with the ARIMA model
013 The moving average model c0UQ gitir
014 Code Forecasting with MA q FBAA gitir
015 The autoregressive model w7hS gitir
016 Code Forecasting with AR p Xnlp gitir
017 The ARMA model yOMd gitir
018 Designing a general modeling procedure EWBk gitir
019 Code Forecasting with ARMA p q Vqv3 gitir
020 The ARIMA model DhRP gitir
021 Code Forecasting with ARIMA p d q OqS9 gitir
022 Modeling seasonality 5s7o gitir
023 Code Forecasting with SARIMA d42s gitir
024 Adding external variables to our model sqZx gitir
025 Code Forecasting with SARIMAX lbwP gitir
Section 4
Multivariate forecasting
026 Multivariate forecasting n8bg gitir
027 Code Forecasting with VAR xy1f gitir
028 Code Forecasting with VARMA AMbi gitir
029 Code Forecasting with VARMAX ojRU gitir
Section 5
xponential smoothing
030 Simple exponential smoothing 4krw gitir
031 Code Forecasting with simple exponential smoothing 0Vym gitir
032 Double exponential smoothing mO7v gitir
033 Code Forecasting with double exponential smoothing XYXX gitir
034 Triple exponential smoothing hniI gitir
035 Code Forecasting with triple exponential smoothing vVH4 gitir
Section 6
Forecasting multiple seasonal periods
036 BATS and TBATS Fybs gitir
037 Code Forecasting with BATS and TBATS QBtq gitir
Section 7
Forecasting using decomposition
038 The Theta model wJVP gitir
039 Code Forecasting with the Theta model x5tV gitir
040 Code Comparing Theta to SARIMA khCP gitir
Section 8
Deep learning for time series forecasting
041 Introducing deep learning for time series forecasting 7Gjr gitir
042 Code Preprocessing data for deep learning xMgt gitir
043 Linear models qRxF gitir
044 Code Linear models aBl2 gitir
045 Deep neural networks OBGz gitir
046 Code Deep neural networks phiD gitir
047 LSTM vUyK gitir
048 Code LSTM AdZp gitir
049 Code CNN 2v15 gitir
050 CNN o2wi gitir
Section 9
EXTRA - Prophet
051 Understanding Prophet 5WVT gitir
052 Code Get started with Prophet ExiH gitir
053 Advanced features of Prophet KjCE gitir
054 Code Advanced features of Prophet Orc4 gitir
055 Hyperparameter tuning with Prophet GX0H gitir
056 Code Hyperparameter tuning with Prophet Xs2A gitir
057 Code Forecasing with Prophet G0m0 gitir
058 N BEATS vp7z gitir
059 Code NBEATS IgbZ gitir
060 NHITS CI9a gitir
061 Code NHITS mKM1 gitir
062 PatchTST rYY0 gitir
063 Code PatchTST RtNq gitir
064 TimesNet jvE3 gitir
065 Code TimesNet McX2 gitir
066 TiDE CXHo gitir
067 Code TiDE niSB gitir
068 TSMixer hxbl gitir
069 Code TSMixer J9ZJ gitir
070 iTransformer Ge7J gitir
071 Code iTransformer FutV gitir
072 SOFTS cUUT gitir
073 Code SOFTS J8ME gitir
074 RMoK X995 gitir
075 Code RMoK Hyi0 gitir
076 Introduction to intermittent time series forecasting XWsa gitir
077 Croston s method gH3Z gitir
078 Code Croston s method qUMd gitir
079 ADIDA and IMAPA 1mmS gitir
080 Code ADIDA and IMAPA ylcQ gitir
081 TSB rbV7 gitir
082 Code TSB 2qCX gitir
083 Error metrics for intermittent time series forecasting ltwD gitir
084 Code Error metrics for intermittent time series forecasting maZk gitir
085 Code Forecast the monthly sales of car parts wL8M gitir
Instructors
Enrolment options
Complete Time Series Forecasting Bootcamp in Python (2025)
Course modified date:
6 July 2025
Complete Time Series Forecasting Bootcamp in Python (2025)
Enrolled students:
There are no students enrolled in this course.
Guests cannot access this course. Please log in.
Continue
Enrol now
This course includes
Forums
Resources
Share this course
Scroll to top
×
Close
×
Close